Daneš theorem in complete random normed modules
نویسندگان
چکیده
منابع مشابه
Mazur-Ulam theorem in probabilistic normed groups
In this paper, we give a probabilistic counterpart of Mazur-Ulam theorem in probabilistic normed groups. We show, under some conditions, that every surjective isometry between two probabilistic normed groups is a homomorphism.
متن کاملBishop-Phelps type Theorem for Normed Cones
In this paper the notion of support points of convex sets in normed cones is introduced and it is shown that in a continuous normed cone, under the appropriate conditions, the set of support points of a bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.
متن کاملMapping Theorem in 2 - Normed Space
In this paper, we give some properties of the sets Be(a, r) and Be[a, r]. This enables us to obtain a result analogue of “Open mapping theorem”for 2-normed space 2000 Mathematics Subject Classification: 41A65, 41A15.
متن کاملCentral Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملGENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2014
ISSN: 1029-242X
DOI: 10.1186/1029-242x-2014-317